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100 GeV/c2 splitting in the quark and lepton masses [1].
A four-generation model [2] could provide a source of
particle-antiparticle asymmetry large enough to account
for the baryon asymmetry of the universe [3], and acco-
modate a heavier Higgs boson (the source of mass gener-
ation) than a three-generation model [4]. Direct searches
for production of chiral fourth generation quarks restrict
their masses to be greater than 335 GeV/c2 [5] for an up-
type quark t′ decaying via t′ → Wq and 338 GeV/c2 [6]
for a down-type quark b′ decaying via b′ → tW .

This Letter reports a search for pair-production via
strong interactions of a heavy chiral [7] bottom-like
quark, b′, followed by prompt decay to a t quark and a
W boson with branching ratio B(b′ → Wt) = 100%. The
assumption that b′ decays exclusively to tW is reason-
able if the coupling to light quarks is small, as expected
from precision meson-mixing measurements [8], and in
the hypothesis that mb′ > mt + mW . In the case that
the branching fraction deviates from 100%, the limits can
be interpreted under different assumptions [9]. Previous
searches considered the mode in which two same-charge
W bosons decayed leptonically [6], which gives a low-
background signature but a low selection efficiency due to
the smallW → ℓν branching ratio. We consider the mode
b′b̄′ → W+tW−t̄ → W+W−bW+W−b̄ → ℓνqq′bqq′qq′b
in which one W boson decays leptonically (including τ
decays to e or µ) and the remaining three W bosons
decay hadronically, giving a selection efficiency nearly
four times the previous search. The larger SM back-
grounds can be separated from a potential signal by com-
paring the total reconstructed transverse momentum in
the event.

Events were recorded by CDF II [10, 11], a general
purpose detector designed to study collisions at the Fer-
milab Tevatron pp collider at

√
s = 1.96 TeV. A charged-

particle tracking system immersed in a 1.4 T magnetic
field consists of a silicon microstrip tracker and a drift
chamber. Electromagnetic and hadronic calorimeters
surround the tracking system and measure particle en-
ergies. Drift chambers located outside the calorimeters
detect muons. We use a data sample corresponding to
an integrated luminosity of 4.8±0.3 fb−1.

The data acquisition system is triggered by e or µ can-
didates [12] with transverse momentum pT [11] greater
than 18GeV/c. Electrons and muons are reconstructed
offline and selected if they have absolute value of pseudo-
rapidity η [11] less than 1.1, pT ≥ 20 GeV/c and satisfy
the standard CDF identification and isolation require-
ments [12]. Jets are reconstructed in the calorimeter us-
ing the jetclu [13] algorithm with a clustering radius of
0.4 in azimuth-pseudorapidity space and corrected using
the standard techniques [14]. Jets are selected if they
have pT ≥ 15 GeV/c and |η| < 2.4. Each jet is con-
sidered for heavy-flavor tagging using the default CDF
b-jet identification algorithm (secvtx[15]) that searches
in the jet for a secondary vertex which results from the

displaced decay of a B-hadron inside the jet. Missing
transverse momentum [16] is reconstructed using fully
corrected calorimeter and muon information [12].
Production and decay of b′ pairs would appear as

events with a charged lepton and missing transverse mo-
mentum from the leptonically decaying W , and a large
number of jets from the two b quarks and the hadronic
decays of the other three W bosons. We select events
with exactly one electron or muon, at least five jets, and
at least 20 GeV/c of missing transverse momentum. At
least one of the jets must be identified as due to b quark
decay. We find 357 events satisfying these requirements.

We model the production and decay of b′ pairs with
madgraph [17]. Additional radiation, hadronization
and showering are provided by pythia [18]. The de-
tector response for all simulated samples is modeled by
cdfsim [19]. The signal efficiency for the above require-
ments is approximately 9%, rising with b′ mass. There
are eight quarks produced in the decay, but the most
likely number of reconstructed jets is six, as quarks that
are close together are likely to be merged into a single
jet, and some of the quarks produce jets which fall below
the transverse momentum threshold. Complete mass re-
construction is therefore not possible in the majority of
the events; instead, we examine the event ST, the scalar
sum of the transverse momentum of the lepton, jets and
missing transverse momentum. This is well correlated
with the mass of the heavy quark and serves as an ap-
proximate mass reconstruction.
The dominant background (80%) is top-quark pair pro-

duction with additional jets from initial or final state ra-
diation. This background can be distinguished from the
signal as it has smaller ST. We model this background
using madgraph tt̄ production with mt = 172.5 GeV/c2

in which radiation of up to three additional hard partons
(including heavy flavor) are described explicitly using
matrix-elements, and additional radiation is described
by the parton-shower; the mlm [20] scheme is used to
match the matrix-element and parton-shower contribu-
tions. This gives a precise description of events with
≤ 7 jets, where a b′ signal would be expected. Events
with eight jets and above are described by the parton
shower, which has significantly larger systematic uncer-
tainties. We normalize the tt̄ background to the NLO
cross section [28], and confirm that it is well modeled by
examining tt̄-dominated regions in the data.

The second dominant background process (≈ 10%) is
the associated production of W boson and jets. Samples
of simulated W+jets events with light- and heavy-flavor
jets are generated using the alpgen [21] program, in-
terfaced with parton-shower model from pythia. The
W+jets samples are normalized to the measured W cross
section, with an additional multiplicative factor for the
relative contribution of heavy- and light-flavor jets, the
standard technique in measuring the top-quark pair pro-
duction cross section [15]. Multi-jet background (≈ 5%),
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in which a jet is misreconstructed as a lepton, is modeled
using a jet-triggered sample normalized in a background-
dominated region at low missing transverse momentum.
The remaining backgrounds, single top and diboson pro-
duction, are modeled using pythia and normalized to
next-to-leading order cross sections [22]. The combined
background expectation is 365±194 events, including sys-
tematic and statistical uncertainties.

A b′ signal would be readily separated from the back-
ground both in the number of jets and the ST. To take
advantage of both of these characteristics, we introduce

a variable S
Njet

T
which equals ST for events with exactly

5 jets, S
Njet

T
= ST + 1000 GeV for events with exactly 6

jets, and S
Njet

T
= ST +2000 GeV for events with at least

7 jets. This is equivalent to a two-dimensional analysis
in Njets and ST. Figure 1 shows the distributions of
an example b′ signal with mb′ = 350 GeV/c2 and the

backgrounds in jet multiplicity and S
Njet

T
, as well as the

expected backgrounds and observed data.

We consider several sources of systematic uncertainty
on both the background rates and distributions, as well
as on the expectations for the signal. The dominant sys-
tematic uncertainties are the jet energy scale [14], con-
tributions from multiple interaction in the same bunch
crossing, and descriptions of initial and final state radi-
ation [23]. The impact on the cross-section upper lim-
its of the uncertainty due to each source was estimated
by varying it according to the amount of its uncertainty

and observing the resulting effects on the S
Njet

T
spectrum.

Each uncertainty weakens the expected 95% confidence
level (C.L.) cross section upper limit by ≈ 60% individu-
ally. Additional uncertainty comes from parton distribu-
tion functions (PDF) [24, 25], the matching scale used
between the matrix-element and the parton shower, over-
all background normalization, and uncertainties in per-
formance of the b-quark identification algorithm. The
overall impact on the expected sensitivity is ≈ 100% in
the cross section and ≈ 20 GeV/c2 on the expected mass
limit.

To validate the description of the backgrounds, we ver-
ify that the low ST region is well-described where there
is little signal expected. See Table I. In events with
≥ 7 jets, the observed ST is larger than predicted by
our background model. The number of observed events
with ≥ 7 jets and ST > 500 GeV is 12 where we expect
3.4± 3.4. However, the total number of events observed
in the low ST and high ST regions combined is consistent
with expectation. Considering only the number of events
in the high ST regions and taking into account the sys-
tematic uncertainties in the background prediction, we
see a more significant excess than that observed in the
data in 12% of simulated experiments.

The full S
Njet

T
spectrum is used in the analysis. Since

there is no evidence for the presence of b′ events in the
data, we calculate 95% C.L. upper limits on the b′ pro-
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FIG. 1: Distributions in jet multiplicity and S
Njet

T (defined
in the text). The example b′ signal has mb′ = 350 GeV/c2

and would have 29± 4.5 events expected in this sample. Top
pane is log scale; bottom pane shows the difference between
expected and observed events on a linear scale, as well as the
total uncertainty on the expected events. The background
uncertainty (Bkg Unc.) is shown as a solid grey line.

duction cross section, by performing a binned maximum-

likelihood fit in the S
Njet

T
variable, allowing for systematic

and statistical fluctuations via template morphing [26].
We use the likelihood-ratio ordering prescription [27] to
construct classical confidence intervals in the theoretical
cross section by generating ensembles of simulated exper-
iments that describe expected fluctuations of statistical
and systematic uncertainties on both signal and back-
grounds. The observed limits are consistent with expec-
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TABLE I: Expected and observed events in a background-
dominated control region (ST < 400, 450, 500 for Njet =
5, 6,≥ 7, respectively) and in a signal-dominated region
(ST > 400, 450, 500 for Njet = 5, 6,≥ 7) for our selection (see
text). Uncertainties are statistical and systematic, combined
in quadrature.

Control Region Signal Region Sum
Jets Exp. Obs. Exp. Obs. Exp. Obs.
5 207 ± 125 199 84 ± 65 87 291 ± 190 286

6 43 ± 31 40 18 ± 12 14 61 ± 43 54

≥ 7 11 ± 3.9 5 3.4 ± 3.4 12 14 ± 7.1 17

tation in the background-only hypothesis and are given
together with theoretical next-to-leading-order (NLO)
cross sections [28, 29] in Table II and shown in Fig. 2.

We convert upper limits on the pair-production cross
sections to lower limits on the fermion masses. The rela-
tive cross-section uncertainty of ≈ 10% due to scale and
PDF uncertainties translates into ≈ 3 GeV/c2 for the
mass lower limits.

In conclusion, we have searched for pair production of
b′ quarks with subsequent decay to tW . Though there
are events with larger ST than expected in the 7-jet event
distribution in Fig 1, we do not see evidence of a sig-
nal. We calculate upper limits on the b′ pair production
cross section (. 30 fb for mb′ >375 GeV/c2) and set
the most restrictive direct lower limit on the mass of a
down-type fourth-generation quark, increasing the limit
by 34 GeV/c2 beyond previous limits and significantly
reducing the allowed mass range to mb′ ≥ 372 GeV/c2.
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FIG. 2: Upper limits on b′ production cross section at 95%
C.L. assuming B(b′ → Wt)=100%. Solid black line is the
median expected upper limit in simulated experiments with-
out b′ signal; green and yellow bands represent 68% and 95%
of simulated experiments, respectively; solid red line is the
observed limit. Dashed black line is the NLO b′ production
cross section [28, 29].

für Bildung und Forschung, Germany; the World Class
University Program, the National Research Foundation
of Korea; the Science and Technology Facilities Coun-
cil and the Royal Society, UK; the Institut National de
Physique Nucleaire et Physique des Particules/CNRS;
the Russian Foundation for Basic Research; the Minis-
terio de Ciencia e Innovación, and Programa Consolider-
Ingenio 2010, Spain; the Slovak R&D Agency; and the
Academy of Finland.

[1] O. Cobanoglu, E. Ozcan, S. Sultansoy et al.,
arXiv:1005.2784

[2] P. Frampton, P. Hung, and M. Sher, Phys. Rept. 330,
263 (2000).

[3] W.-S. Hou, Chin. J. Phys. 47, 134 (2009).
[4] G. Kribs, T. Plehn, M. Spannowsky, and T. Tait, Phys.

Rev. D 76, 075016 (2007).
[5] A. Lister,ICHEP2010, in preparation
[6] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.

104, 091801 (2010).
[7] We specify chiral quarks to distinguish from theories of

a vector-like fourth generation.
[8] O. Eberhardt, A. Lenz, and J. Rohrwild, arXiv:1005.3505
[9] C. Flacco et al, Phys. Rev. Lett. 105 (2010) 11801.

[10] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71,
032001 (2005).

[11] CDF uses a cylindrical coordinate system with the z
axis along the proton beam axis. Pseudorapidity is η ≡
− ln(tan(θ/2)), where θ is the polar angle relative to the
proton beam direction, and φ is the azimuthal angle while
pT = |p| sin θ, ET = E sin θ.



7

[12] A. Abulencia et al. (CDF Collaboration), Phys. Rev.
Lett. 97, 082004 (2006); D. Acosta et al. (CDF Collabo-
ration), Phys. Rev. Lett. 94, 091803 (2005).

[13] F. Abe et al (CDF Collaboration) , Phys. Rev. D 45,
001448 (1992).

[14] A. Bhatti et al., Nucl. Instrum. Methods 566, 375 (2006).
[15] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D

74, 072006 (2006).
[16] Missing transverse momentum, 6ET , is defined as the mag-

nitude of the vector −
∑

i
Ei

T~ni where E
i
T are the magni-

tudes of transverse energy contained in each calorimeter
tower i, and ~ni is the unit vector from the interaction
vertex to the tower in the transverse (x, y) plane.

[17] J. Alwall et al. J. High Energy Phys. 09 (2007) 028, ver-
sion 4.4.24.

[18] T. Sjostrand et al., Comput. Phys. Commun. 238 135
(2001), version 6.422.

[19] E. Gerchtein et al., arXiv:physics/0306031 (2003).

[20] M. Mangano, arXiv:hep-ph/0602031
[21] M. Mangano et al., J. High Energy Phys. 07 (2003) 001.
[22] J. Campbell and R. Ellis, Phys. Rev. D 60 113006 (1999).
[23] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D.

73 32003 (2006).
[24] J. Pumplin et al. (CTEQ Collaboration), J. High. Energy

Phys. 07 (2002) 012.
[25] A. D. Martin et al. (MRST Collaboration), Phys. Lett.

B 356 89 (1995).
[26] A. Read, Nucl. Instrum. Methods A425:357-360 (1999).
[27] G. Feldman and R. Cousins, Phys. Rev. D 57, 3873

(1998).
[28] R. Bonciani, S. Catani, M. L. Mangano, and P. Nason,

Nucl. Phys. B529, 424 (1998).
[29] M. Cacciari, S. Frixione, M. L. Mangano, P. Nason, and

G. Ridolfi, J. High Energy Phys. 04 (2004) 068.


